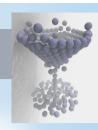
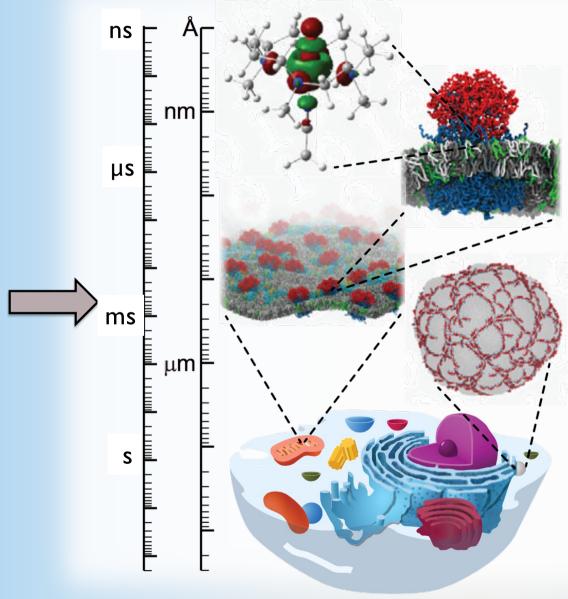
Introduction to Martini

Siewert-Jan Marrink
University of Groningen
The Netherlands

"Martini Basics"


Hands on: how to prepare a Martini


"gin and vermouth are combined at a ratio of 2:1, stirred in a mixing glass with ice cubes, then strained into a chilled cocktail glass and garnished with an olive"

- A Dry Martini is made with dry gin and white vermouth
 - Martini Rosso uses red vermouth (caramel flavor)
 - Vodka Martini uses vodka instead of gin
- A Perfect Martini uses equal amounts of sweet and dry vermouth
 - Zen Martini: Martini with no gin at all, and no vermouth either

"Martini should be made by filling a glass with gin, then waving it in the general direction of Italy"

Bridging the all-atom to the continuum scale

Quantum

- atoms, electrons and electron clouds included
- explicit solvent
- quantum mechanics

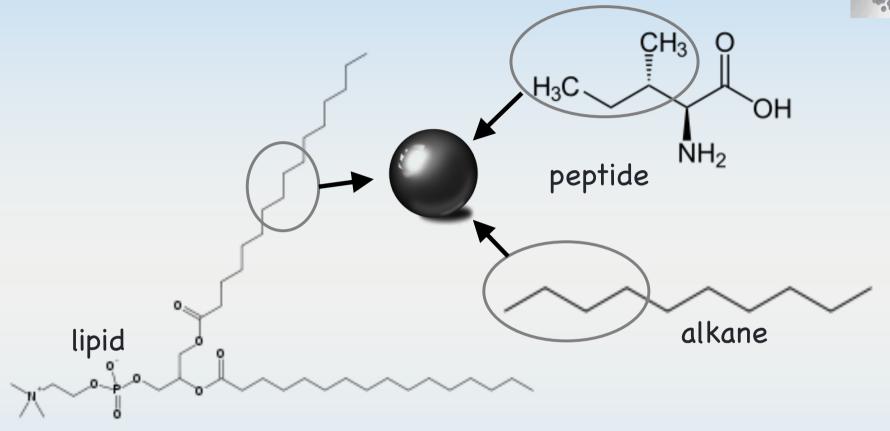
All-atom

- all or most atoms present
- explicit solvent
- molecular dynamics

Coarse-grained

- beads comprising a few atoms
- explicit or implicit solvent
- molecular dynamics

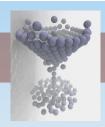
Supra-coarse-grained

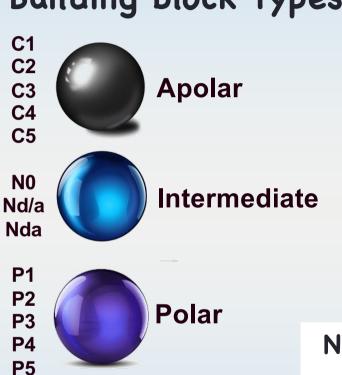

- interaction sites comprising many atoms, protein parts or proteins
- implicit solvent
- stochastic dynamics

Continuum

- materials as a continuous mass
- implicit solvent
- continuum mechanics

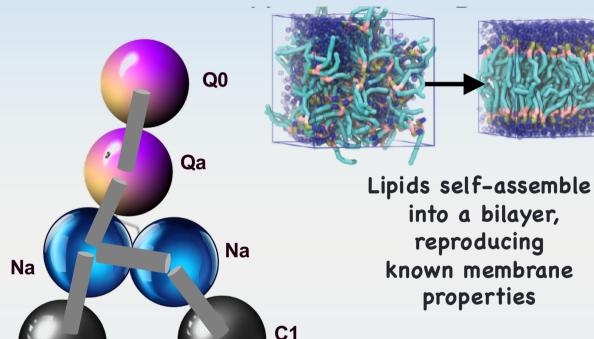
Mapping of atoms to building blocks




The Martini model reduces complexity of real molecules by considering groups of atoms as building blocks – the "Lego" principle

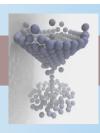
On average 4 heavy atoms (and associated hydrogens) are considered as building block and mapped to a coarse-grain bead

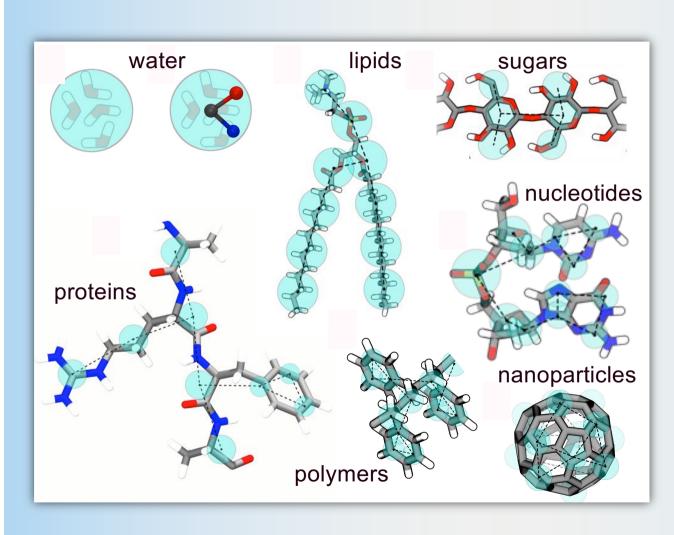
The building block principle


Building block types

Charged

Q0


Qd/a Qda



Non-bonded interactions of building blocks parameterized based on reproducing experimental thermodynamic data

Bonded interactions parameterized to match conformations of all-atom simulations (or structural databases)

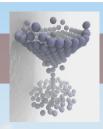
Welcome to the Martinidome

Key features:

- Chemical specificity
- Fast (10³ speed-up)
- Compatibility
- Versatility

Parameterization:

TOP DOWN


Thermodynamic data

BOTTOM UP

Atomistic simulations

"TOP UP"

SJ Marrink & DP Tieleman, Chem. Soc. Rev. (2013)

The Martini force field is developed in Groningen and named after **Saint Martin**, patron saint of Groningen

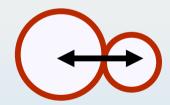
(any association with cocktails is entirely coincidental)

Non-bonded interactions: LJ & Coulomb

effectively distant-dependent screening, ε_R=∞ at cut-off

Limitation:
change in
environment not
felt by charges

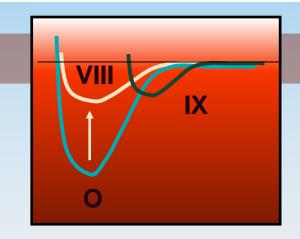

Non-bonded interactions described by standard LJ and Coulombic energy functions



electrostatic

 $^{\circ}$ Coulomb (screened, ε_R =15)

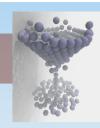
dispersion

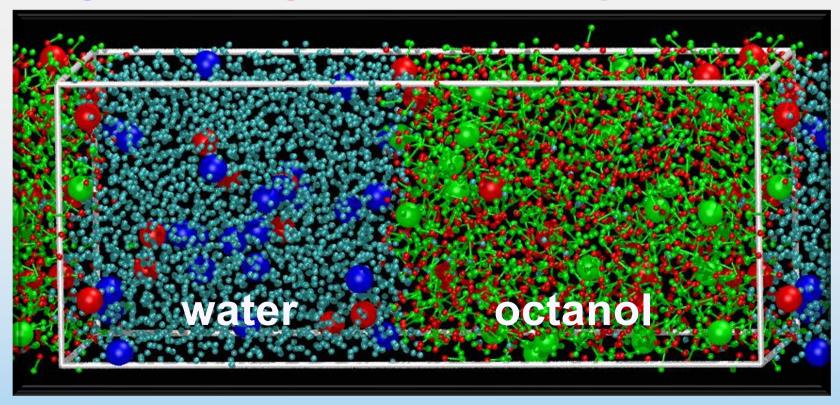

overlap

} LennardJones

- > Potentials are **short-ranged** by use of *cut-off* (1.1 nm, 2-3 neighbors)
- Cut-off artefacts prevented by using potential/force modifiers (so potentials/forces vanish at cut-off)

LJ interaction matrix for Martini beads

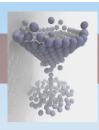

- > LJ interactions depend on type of CG bead
- ➤ Beads have fixed size (Regular, Small, Tiny)

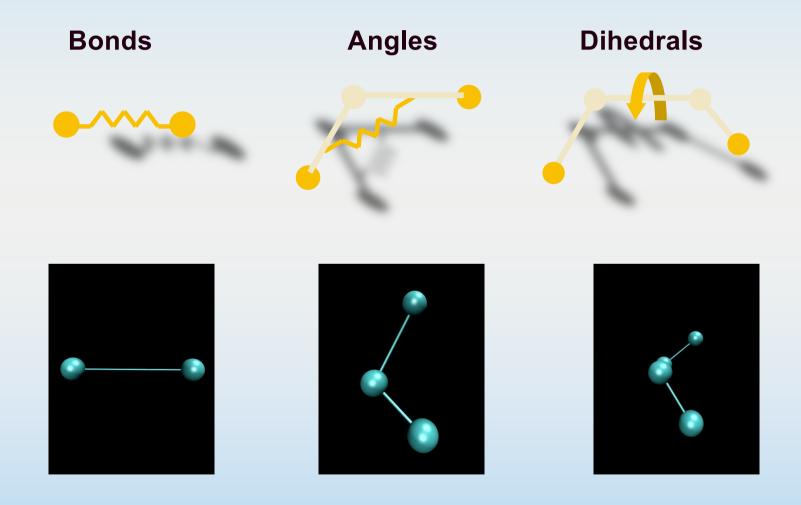

> LJ cross interactions explicitly parameterized (*no combination rule!*)

		ch	narge	D) be	2)		pol	ar (P)		inte	rme	diate	(N)		ар	olar	(C)	
		da	d	а	0	5	4	3	2	_1	da	d	а	0	5	4	3	2	1
Q	da	0	О	0	II	0	0	0	I	I	I	I	I	IV	V	VI	VII	IX	IX
	d	O	Ι	O	\mathbf{II}	O	0	О	I	Ι	I	\mathbf{III}	Ι	IV	V	VI	VII	IX	IX
	a	O	O	I	II	O	0	0	I	Ι	I	Ι	III	IV	V	VI	VII	IX	IX
	0	II	Π	II	IV	I	0	I	II	\mathbf{III}	\mathbf{III}	\mathbf{III}	\mathbf{III}	IV	V	VI	VII	IX	IX
P	5	O	O	O	Ι	Q	0	0	О	O	Ι	Ι	Ι	IV	V	VI	VI	VII	VIII
	4	O	O	O	O	0	I		II	Π	III	\mathbf{III}	\mathbf{III}	IV	V	VI	VI	VII	VIII
	3	O	O	O	Ι	O	1	I	П	II	II	Π	II	IV	IV	V	V	VI	VII
	2	I	I	I	II	O	П	11	II	П	II	П	II	III	IV	IV	V	VI	VII
	1	I	I	I	III	O	II	II	h	II	H	II	II	III	IV	IV	IV	V	VI
N	da	Ι	Ι	I	III	Ι	Ш	II	II	H	II	T.	II	IV	IV	V	VI	VI	VI
	d	I	Ш	I	III	Ι	III	II	II	II	11	III	11	IV	IV	V	VI	VI	VI
	a	I	I	Ш	III	I	Ш	II	II	II	II	h	III	17	IV	V	VI	VI	VI
_	0	IV	IV	IV	IV	IV	IV	IV	III	III	IV	IV	IV	IV	Iv	IV	IV	V	VI
C	5	V	V	V	V	V	V	IV	IV	IV	IV	IV	IV	IV	IV	Iv	IV	V	V
	4	VI	VI	VI	VI	VI	VI	V	IV	IV	V	V	V	IV	IV	IV	IV	V	V
	3	VII	VII	VII	VII	VI	VI	V	V	IV	VI	VI	VI	IV	IV	Iv	IV	IV	IV
	2	IX	IX	IX	IX	VII	VII	VI	VI	V	VI	VI	VI	V	V	V	IV	IV	IV
	1	IX	IX	IX	IX	VIII	VIII	VII	VII	VI	VI	VI	VI	VI	V	V	IV	Iv	, IV

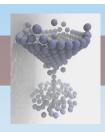
Top-down: reproducing experimental partitioning data

- LJ interactions are mainly parameterized based on reproducing experimental partitioning free energies
- Free energies obtained from "direct counting": $\Delta G_{wat/oct} = \frac{1}{kT} \ln \frac{\rho_{wat}}{\rho_{oct}}$
 - Polar (P) Intermediate (N) Apolar (C)

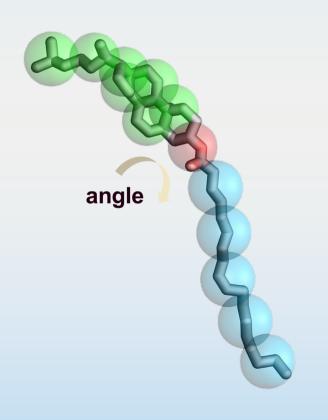


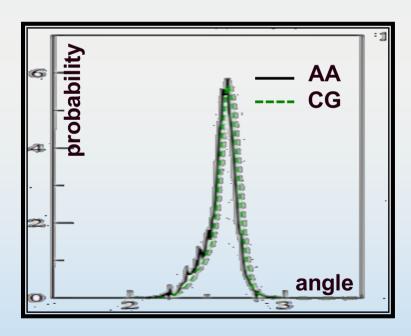

The Martini bible: mapping CG bead types to chemical build

type					G _{HW}	$\Delta G_{ m CW}^{ m part}$		$\Delta G_{ m EW}^{ m p, rt}$		$\Delta G_{ m OW}^{ m part}$	
	building block	examples		exp	CG	exp	CG	exp	CG	exp	CG
Q _{da}	H ₃ N ⁺ C ₂ OH	ethanolamine (protonate	ed)		< -30		-18		-13		-18
Q_d	$H_3N^+-C_3$	1-propylamine (protona	ited)		< -30		-18		-13		-18
	NA ⁺ OH	sodium (hydrated)			< -30		-18		-13		-18
Q_a	PO ₄	phosphate			< -30		-18		-13		-18
	CL-HO	chloride (hydrated)			< -30		-18		-13		-18
Q_0	C_3N^+	choline			< -30		-18		-13		-18
P_5	$H_2 N-C_2=0$	acetamide		-27	-28	(-20)	-18	-15	-13	-8	-10
P_4	$HOH(\times 4)$	water		-25	-23		-14	-10	-7	-8	-9
	$HO-C_2-OH$	ethanediol		-21	-23		-14		-7	-8	-9
P_3	$HO-C_2=O$	acetic acid		-19	-21	-9	-10	-2	-6	-1	-7
	C-NH-C=O	methylformamide			-21		-10		-6	-5	-7
_	C ₂ —OH	ethanol		-13	-17	-5	-2	-3	1	-2	-2
\mathbf{P}_{1}	C ₃ —OH	1-propanol		-9	-11	-2	-2	0	1	1	-1
		2-propanol		-10	-11	-2	-2	-1	1	0	-1
No. and	C ₄ —OH	1-butanol		-5	-7	2	0	4	2	4	3
-	H_2 $N-C_3$	1-propylamine		(-6)	-7	(1)	0	(-3)	2	(3)	3
-	$C_3=0$	2-propanone		-6	-7	1	0	-1	2	-1	3
	C-NO ₂	nitromethane		-6	-7		0		2	-2	3
	$C_3=N$	proprionitrile		-5	-7		0		2	1	3
	C-O-C=0	methylformate		(-6)	-7	(4)	0	(-1)	2	(0)	3
	$C_2HC=O$	propanal		-4	-7		0	2	2	3	3
N_0	$C-O-C_2$	methoxyethane		(1)	-2		6	(3)	6	(3)	5
C_5	C ₃ -SH	1-propanethiol			5		10		10		6
	$C-S-C_2$	methyl ethyl sulfide		(7)	5		10		10	(9)	6
\mathbb{C}_4	$C_2 = C_2$	2-butyne			9		13		13	9	9
	C=C-C=C	1,3-butadiene		11	9		13		13	11	9
	$C-X_4$	chloroform		(7)	9	14	13		13	11	9
C_3	$C_2=C_2$	2-butene			13		13		13	13	14
	C_3 — X	1-chloropropane		12	13		13		13	12	14
		2-bromopropane			13		13		13	12	14
	C ₃	propane			16		15		14	14	16
C_1	C ₄	butane		18	18		18		14	16	17
		isopropane			18		18		14	16	17


	EXP	CG
P ₅ P ₄ P ₃ P ₂ P ₁	-27 -25 -21 -19 -13 -9 -10	-28 -23 -23 -21 -21 -17 -11
N_{da} N_{d} N_{a}	-5 (-6) -6 -5 (-6) -4 (1)	-7 -7 -7 -7 -7 -7 -7
c_5	(7) 11	5 5 9
c_3	(7) 12	9 13 13 13
$^{\mathrm{C}_2}_{\mathrm{C}_1}$	18	16 18 18

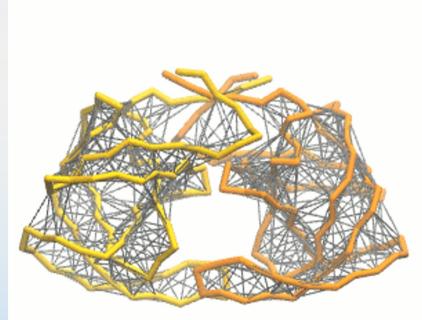
Simple harmonic forms for bonded interactions





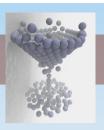
Bottom-up approach for bonded interactions

Bonded interactions are parameterized by mapping to all-atom simulations



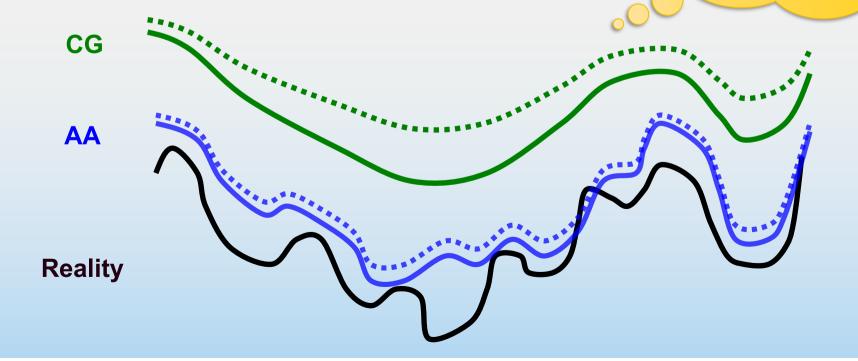
Proteins require elastic network

Elastic network approach (ElNeDyn) required to maintain 2ndary structure of proteins (directional H-bonds are missing in Martini!)


ElNeDyn: harmonic potentials between all $C\alpha$ beads within a cut-off

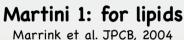
Limitation: Folding/unfolding not possible with Martini

However: GoMartini offers some flexibility

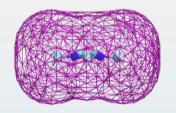

Periole et al., JCTC 5:2531-2543, 2009

Why is Martini so fast (1000 x speedup)

- > Less particles, so less interactions to compute
- > Short range potentials only
- > Less friction, so faster sampling
- Time steps of 20-30 fs can be used (accurate sampling is less critical)


Limitation:
Timescale should
be interpreted
with care

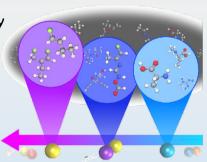
Martini 3



Martini 2: for biomolecules

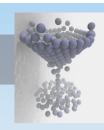
Marrink et al. JPCB. 2007

Martini 3: for general purpose
Souza et al. Nature Methods, 2021

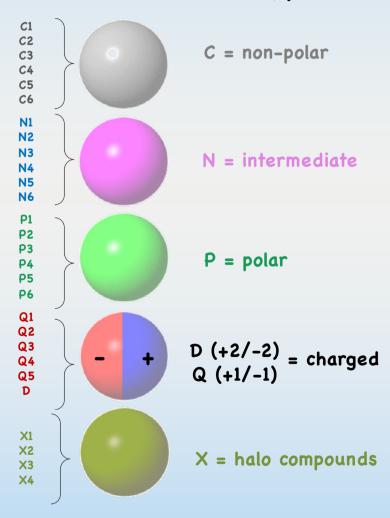


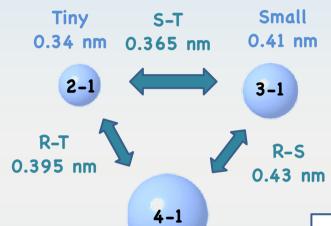
1) Improved interactions and packing

Reparametrized all bead-bead interactions and bonds using center-of-geometry


- 2) Better coverage of chemical space

 New beads and ways to modify them
- 3) Reformulation of charged beads
 Including bare ions and double charged ions, Hoffmeister series
- 4) Embracing Gō models for proteins
 Allowing allostery and folding/unfolding transitions




Martini 3: Just bead it ...

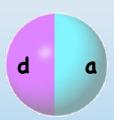
28 Bead Chemical Types

3 Bead Sizes

Specific bead for water

From M2 to M3:

 $54 \rightarrow 843$ beads


 $1,485 \rightarrow 355,746$ pairs

 $60 \rightarrow 1,301$ parameters

9 Bead Labels

Regular

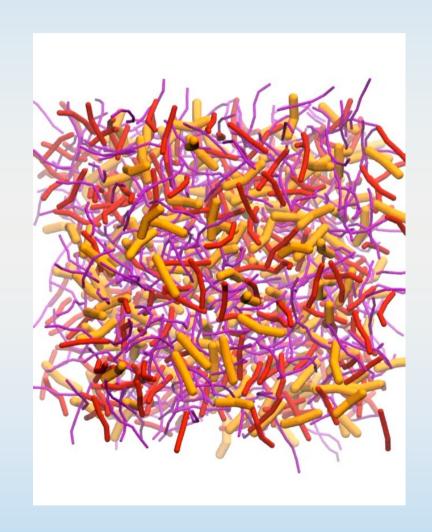
0.47 nm

Examples:

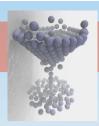
H-donor (d) / H-acceptor (a) Electron rich (e) / Electron poor (v)

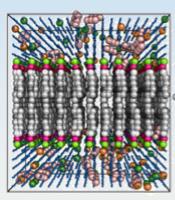
Souza et al., Nature Methods 2022

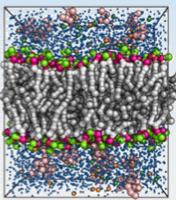
Martini 3.0 bead sizes well balanced



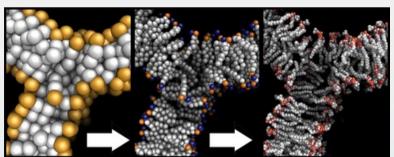
Mixing different resolutions of liquid dodecane with:

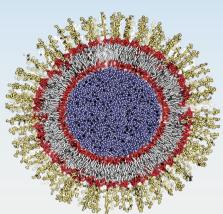

3 N beads (orange),


4 S beads (red), and


6 T beads (magenta)

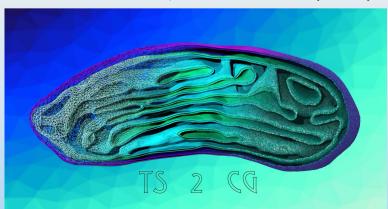
High-throughput tools




Insane

Wassenaar et al., JCTC (2015)

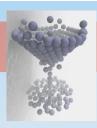
Wassenaar et al., JCTC (2014)

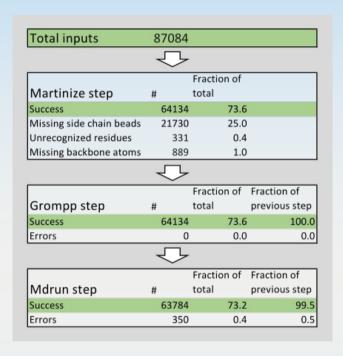


Martini-Maker (Charmm-GUI)

Qi et al., *JCTC* (2015)

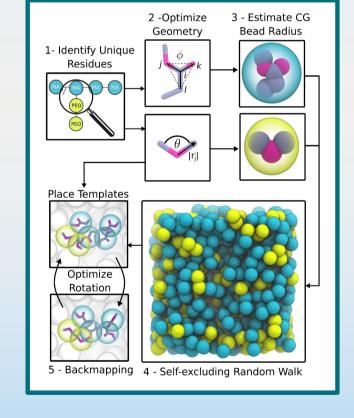
TS2CG

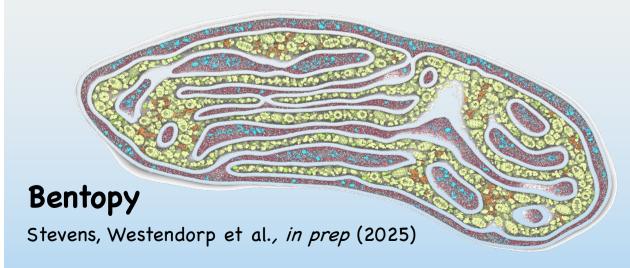

Pezeshkian et al., Nature Comm (2020)



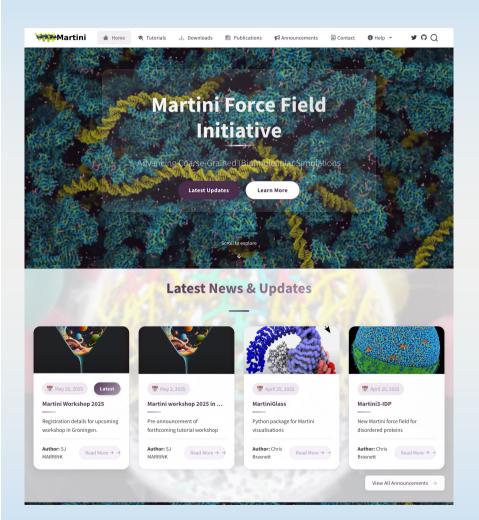
Bereau & Kremer, JCTC (2015)

More high-throughput tools




Martinize2

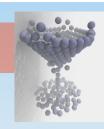
Kroon et al., eLife (2023)


Polyply

Grünewald et al., Nat. Comm. (2022)



Open science


cgmartini.nl

mad.ens-lyon.fr

The schedule

Day 1: LipidsMorning lectures
Afernoon tutorial

Day 2: Proteins

Morning lectures

Afernoon tutorial

Evening poster session

Day 3: Parameterization

Morning lectures

Afernoon tutorial

Day 4: Complex Systems

Morning lectures

Afernoon tutorial

Evening conference dinner

Day 5: Your Own Morning tutorial

Note: tutorials available at both beginner and advanced levels

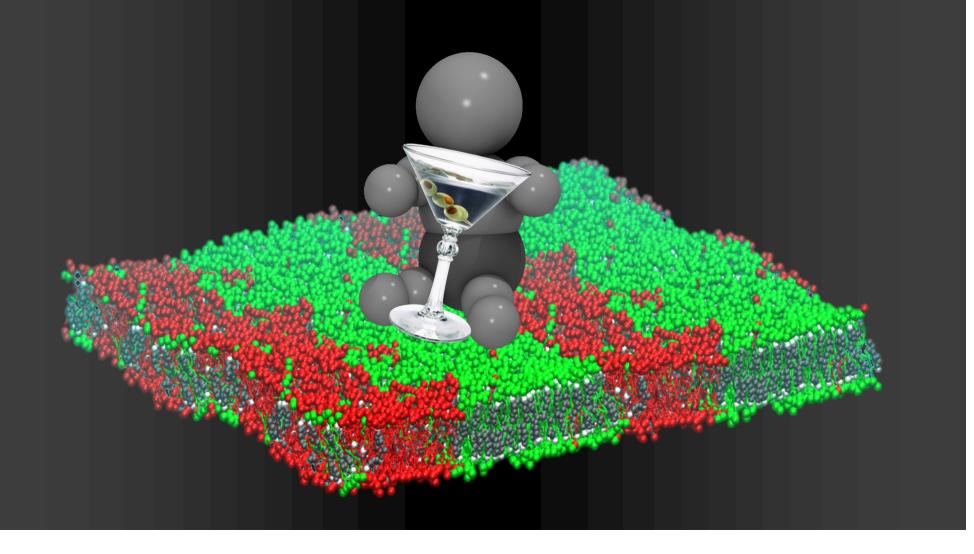
The workshop team

Lecturers

Tsjerk Wassenaar Helgi Ingolfsson Manel Melo Sebastian Thallmair Adolfo Poma Riccardo Alessandri Fabian Grünewald Linus Grünewald Weria Pezeshkian Chris Brasnett Luis Borges Daniel Ramirez Jan Stevens Chelsea Brown

TAs

Abby Dommer
Bart Bruininks
Rubi Zarmiento
Pietro Sillano
Wietske Nauta
Marieke Westendorp


Support

Alex de Vries Jannet Nijhuis

Enjoy Sampling Martinis!!

"A man must defend his home, his wife, his children, and his martini." - Jackie Gleason

