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The age of biomolecular simulation

✓ CG and ML approaches can study complex (bio)systems in
equilibrium.

✓ ML methods are evolving faster than traditional all-atom methods
and in the race for generic force fields.

✗ Large conformational changes remain a challenge for ML methods.

A.B. Poma, A. Hinostroza et al., J. Biophys. J. 124, 1–17 (2025).
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Large Conformational Changes in Proteins with Martini 3

What are conformational changes?
Transitions between different structural states

Often triggered by:

▶ Ligand binding
▶ pH, temperature shifts
▶ Post-translational modifications

Can involve domain motion, loop shifts, or allosteric
transitions

Biological relevance:

Signal transduction

Enzyme activation/inhibition

Molecular recognition SARS-CoV-2 spike protein, ≈3000 residues, 10nm long, transitions by

N-glycan/mechanical forces, breaking protein contacts.

Casalino, et al. ACS Central Science, 6(10), 1722–1734 (2020). Moreira, R.A., et al. Materials, 13, 5362 (2020).
Olivos-Ramirez. G., Optimizing GōMartini 3 for large protein assemblies. Work in progress.
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Determination of native contacts in proteins: From grapes to amino acids
Developed by Marek Cieplak at IFPAN (1950-201). It defines Cα atoms as interaction centers.
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So far, the best CM=OV+rCSU (Server http://pomalab.ippt.pan.pl/GoContactMap ).
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GōMartini 3: Optimization via high frequency contacts

UGōMartini = UMartini 3
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Electrostatics: interaction between charged (Q) particles

Typical particle size σ ∼ 0.47 nm; ε = 2− 5.6 kJ/mol

GōMartini uses virtual sites at BB (Cα); ϵ′ = 12− 15
kJ/mol, contact range 0.3–1.1 nm

[7] PC. Souza et al., Martini 3: a general purpose force field for coarse-grained molecular dynamics, Nat. Methods 18, 382–388 (2021).
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GōMartini 3: The pipeline for protein complexes

 

Structure preparation

Consider PDB structures 
with “all atoms”, otherwise 
model them.

PDB: 6ZH9
RBD

H11-H4 (a) All-atom/AlfaFold8

[8] J. Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

[9] L. Cofas-Vargas et al. The GōMartini approach: Revisiting the concept of contact maps. Acta Phys. Pol. A, 145(3), p. S9 (2024).

[10] R.A. Moreira et al., New York, NY, 2022. 357-378 (2022).
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Structure preparation

(b) MARTINI 3

Consider PDB structures 
with “all atoms”, otherwise 
model them.
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H11-H4 (a) All-atom/AlfaFold8
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implementation  
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 MD simulation

Create the model for protein complex

martinize2 -f 6ZH9.pdb -o topol.top -x 
6ZH9_CG.gro -dssp -p backbone-ff 
martini3001 -ignh -go *.map -go-moltype 

molecule_0 -go_eps 15 -merge A,B

CG structure

(c) GōMartini 3

Gō inter.

pip install vermouth

Get a contact map file9,10 
 
http://pomalab.ippt.pan.pl/GoContactMap

Add water, 
     lipids, sugars,
               IDP,... 

[8] J. Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
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GōMartini 3: Optimization via high frequency contacts

3 Application of Martini 3 protein model biases – conformational changes
Single molecule force spectroscopy (SMFS)
A therapeutic complex: CTL4:anticalin
Engineering a mechanostable nanobody:SARS-CoV-2 complex
EN application:

4 Summary

24 / 42



Single molecular force spectroscopy (SMFS)
What we show: optimization of attachment residue position in AFM-SMFS can provide large improvements in binding
strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.

AFM-SMFS

Force

Time

Force Profile        
   

0.1-1 µm/s
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AFM-SMFS

Force

Time

Force Profile        
   

Steered Molecular Dynamics 

Restrained position
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Pulling speed ~ 105 - 106 µm/s
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A therapeutic complex: CTL4:anticalin
What we show: optimization of attachment residue position in AFM-SMFS can provide large improvements in binding
strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.

  
[11] Z. Liu, R. Moreira, A. Dujmović, H. Liu, B. Yang, A. B. Poma, and M. A. Nash, Nano Letters 22(1), 179 (2021).

- Martini 3 FF [8]
- Virtual-site GōMartini implementation in   
preparation (2022) or via http://cgmartini.nl
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A therapeutic complex: CTL4:anticalin

  

GōMartini pathways

Anticalin center-of-mass

[11] Z. Liu, R. Moreira, A. Dujmović, H. Liu, B. Yang, A. B. Poma, and M. A. Nash, Nano Letters 22(1), 179 (2021). 29 / 42



A therapeutic complex: CTL4:anticalin

  

GōMartini pathways

Anticalin center-of-mass Native Contacts

[11] Z. Liu, R. Moreira, A. Dujmović, H. Liu, B. Yang, A. B. Poma, and M. A. Nash, Nano Letters 22(1), 179 (2021). 30 / 42
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Lessons learnt from COVID-19 pandemic

Boosted or natural immune responses
were able to neutralize some of the
earliest variants (WT, Delta), but the
emergence of Omicron variants posed
a public health concern for future
outbreaks.

The role played by mechanical forces
during viral entry was found to be
fundamental [13-15]. This property
may influence the immune response
and the design of antibody therapies.

”

[13] M. Koehler,..., A.B. Poma and D. Alsteens, Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants.” Nat. Commun.12.1 (2021)

[14] A. Rai,..., A.B. Poma and D. Alsteens, Single-molecule study of the binding interface stability of SARS-CoV-2:ACE2, ACS Nanoscience Au, 4, 136-145 (2024).

[15] Bauer, M.S., Gruber, S., Hausch, A. et al. Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nat. Nanotechnol. 19, 399–405 (2024).
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SARS-CoV-2:nanobody complex
All-atom SMD simulation[16] reported rupture force (Fmax) values of the RBD (WT)/H11-H4 complex in the range of
400-500 pN. Limited sampling and far from SMFS exp. conditions (i.e. low loading rate).

 

LYS-128

LYS-528

----  GōMartini 3 

RBD (WT)

F=0

[16] M. Golcuk, et al. J. Chem. Inf. Model., 62, 10, 2490–2498 (2022).
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SARS-CoV-2: antibody complex

A systematic nanomechanical study of SARS-CoV-2 variants [17].

 

WT Delta

Nanomechanical fingerprint

[17] Cofas-Vargas, L. F.,..., A. B. Poma. Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule. PNAS nexus 16(40), 18824 (2024).
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Large fluctuations in microtubules via EN model

Reparametrization of a heterogeneous elastic-network towards to capture the long-time
fluctuation of microtubules [18].

[18] S. Abhilash and S.M. Hanson. PNAS nexus 4.7, pgaf202 (2025).
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Take away messages...

1 GōMartini 3 is computationally more efficient, implemented via virtual-sites and
compatible with domain decomposition implementation in GROMACS (>2023.5).

2 Protein complexes undergoing non-equilibrium processes via large mechanical forces
require additional Gō interactions at the interface to compensate Martini 3 FF.

3 GōMartini 3 provides molecular insight into the nanomechanics in protein complexes
and supports AFM-SMFS experiments, with much less computational effort compare
to AA-SMD simulations.
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–Thank you for your attention–

–Any questions?–
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